skip to main content


Search for: All records

Creators/Authors contains: "Riles, Keith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Now that detection of gravitational-wave signals from the coalescence of extra-galactic compact binary star mergers has become nearly routine, it is intriguing to consider other potential gravitational-wave signatures. Here we examine the prospects for discovery of continuous gravitational waves from fast-spinning neutron stars in our own galaxy and from more exotic sources. Potential continuous-wave sources are reviewed, search methodologies and results presented and prospects for imminent discovery discussed. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Dark matter exists in our Universe, but its nature remains mysterious. The remarkable sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) may be able to solve this mystery. A good dark matter candidate is the ultralight dark photon. Because of its interaction with ordinary matter, it induces displacements on LIGO mirrors that can lead to an observable signal. In a study that bridges gravitational wave science and particle physics, we perform a direct dark matter search using data from LIGO’s first (O1) data run, as opposed to an indirect search for dark matter via its production of gravitational waves. We demonstrate an achieved sensitivity on squared coupling as$$\sim\! 4\times 1{0}^{-45}$$~4×1045, in a$$U{(1)}_{{\rm{B}}}$$U(1)Bdark photon dark matter mass band around$${m}_{{\rm{A}}} \sim 4\,\times 1{0}^{-13}$$mA~4×1013eV. Substantially improved search sensitivity is expected during the coming years of continued data taking by LIGO and other gravitational wave detectors in a growing global network.

     
    more » « less
  3. Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.

     
    more » « less